4.905t^2-14.79t-13=0

Simple and best practice solution for 4.905t^2-14.79t-13=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4.905t^2-14.79t-13=0 equation:



4.905t^2-14.79t-13=0
a = 4.905; b = -14.79; c = -13;
Δ = b2-4ac
Δ = -14.792-4·4.905·(-13)
Δ = 473.8041
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14.79)-\sqrt{473.8041}}{2*4.905}=\frac{14.79-\sqrt{473.8041}}{9.81} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14.79)+\sqrt{473.8041}}{2*4.905}=\frac{14.79+\sqrt{473.8041}}{9.81} $

See similar equations:

| -11(-7x+2)+6=7(x-1) | | X/4=2+x-3|3 | | x/6=x/7(-10) | | 0.16(y-9)+0.18y=0.10y-1.8 | | y/4=7+3 | | f(2)=2/(2-5(2)) | | (2x-5)(4-2x)(8+x)=0 | | f(2)=2/2-5(2) | | 1x-10=-7x+14 | | 4(5e+2)=38 | | 4q+7=10 | | 3x5^x=9 | | 2x2+8x=—11 | | -7(v+4)+4v+6=6v+8 | | (4x+5)2=61 | | (3x+20)+(4x+50)=180 | | (3x+20)+4(x+50)=180 | | 13y-52-3y+27-5y-20=0 | | |15x-37|=31 | | 2x/3+5x/2=76 | | 3x+2x+4=20-2x+5 | | (4x-46)(x+1)=180 | | 10x-15+21=5+9x | | 10/2x=15/2x | | 15x-66-7x=22 | | 6x-2=7x-14. | | 10+2a=-13 | | 20(v+1)-4v=4(4v+2)-11 | | 4×(1/3)^x=324 | | x+2=3*(46-x) | | 9z+4=103 | | 9g-2=43 |

Equations solver categories